
Federated Byzantine Agreement to Ensure
Trustworthiness of Digital Manufacturing Platforms

Johannes Innerbichler
The IoT Group, Salzburg Research

Jakob Haringer Strasse 5/II, 5020 Salzburg, Austria
+43 662 2288-419

johannes.innerbichler@salzburgresearch.at

Violeta Damjanovic-Behrendt
The IoT Group, Salzburg Research

Jakob Haringer Strasse 5/II, 5020 Salzburg, Austria
+43 662 2288-427

violeta.damjanovic@salzburgresearch.at

ABSTRACT
In this paper, we explore the use of the Stellar Consensus
Protocol (SCP) and its Federated Byzantine Agreement
(FBA) algorithm for ensuring trust and reputation between
federated, cloud-based platform instances (nodes) and their
participants. Our approach is grounded on federated
consensus mechanisms, which promise data quality
managed through computational trust and data replication,
without a centralized authority. We perform our
experimentation on the ground of the NIMBLE cloud
manufacturing platform, which is designed to support
growth of B2B digital manufacturing communities and their
businesses through federated platform services, managed by
peer-to-peer networks. We discuss the message exchange
flow between the NIMBLE application logic and Stellar
consensus logic.

CCS Concepts
• Security and privacy➝System security➝Distributed
system security • Security and privacy➝Network
security➝Security protocols.

Keywords
Trustworthiness; Consensus protocol; Federated Byzantine
Agreement; Distributed Ledger Technology.

1. INTRODUCTION
One of the major challenges of federated digital
manufacturing platforms is to ensure trust between platform
instances (nodes) and their participants, in a way that
enforces trustworthiness of collaboration platforms, the
integrity of performed actions and measurements, and
correctness of their recording, which further encourages new
organizations to join and extend their businesses to new
collaboration models and new communities. Since some of
the key benefits of the Distributed Ledger Technology relate
to trust and transaction acceleration for the Internet of
Things (IoT), in this paper, we explore the use of distributed
ledgers and consensus protocols to ensure trust and
reputation between various participants collaborating via the
NIMBLE collaborative manufacturing platform. The
development of NIMBLE is funded through the EU H2020
programme (website: https://www.nimble-project.org/), and
it is designed as a federated, cloud-based collaborative
platform for multi-sided B2B trade and enterprises. The

platform supports business process negotiation and
subsequent execution, between manufacturers, suppliers,
service and logistics providers, software and cloud service
providers, and retailers. Its business models require
contractual relationships between all participants and their
services affiliated with the platform. For each instance, the
platform provides a set of services and offers additional,
specifically tailored services for interoperation at regional,
sectorial or topical levels.

The federated nature of the platform increases the
complexity and range of enterprise interoperation, creating
new business opportunities, reducing the need for traditional
practices (e.g. financial, regulatory), but many issues are as
yet, unresolved, e.g. those related to trust and reputation of
the participants, data manipulation and integrity, jammed
communication and spoofing. Hence, in this paper we
explore the applicability of distributed trust algorithms to
maintain agreement and trust through the NIMBLE
distributed network and supply chains. Specifically, we
explore the use of a consensus mechanism that employs the
Federated Byzantine Agreement (FBA) algorithm, which is
implemented within the Stellar consensus protocol (website:
https://www.stellar.org/).

Paper organization. Section 2 briefly describes our
motivation to explore the potential of Distributed Ledger
Technology and federated consensus mechanisms for
establishing secure and valid interoperation between
federated platform instances. Section 3 reviews trust
mechanisms in distributed systems, which are used for
sharing content that is collectively confirmed (agreed)
through the consensus. Here, we look at the Byzantine Fault
Tolerance (BFT) mechanism, Distributed Ledger
Technology (DLT) and a variety of existing community
consensus mechanisms. Section 4 introduces the FBA
algorithm for trust and reputation in NIMBLE. Section 5
illustrates the message flow between the Stellar Consensus
Protocol (SCP) and NIMBLE applications. Section 6
presents our conclusions.

2. MOTIVATION
NIMBLE offers the technology for establishing a multi-
sided federation of digital platforms, enabling
communication and collaboration between the various

country-, regional- or topic-centered platform instances and
participants. For example, Figure 1 shows NIMBLE
platform instances in three countries, Germany, Italy and
Spain. The overall platform architecture topology is
distributed, and requires non-centralized algorithms to
compute trust and reputation through a federated ecosystem.

One of the platform’s requirement towards a federated
ecosystem is to support open membership enabling new
organizations with modest resources to join the platform, to
extend their businesses to new communities, and to create
innovative business models through collaborations, and thus
fulfill their aspirations for economic growth. The main
challenge for such a business ecosystem is to ensure that
participants’ actions and transactions via the platform are
recorded correctly in order to achieve trustworthiness at the
system level. Distributed Ledger Technologies and fault
tolerant system behavior are new elements that need to be
integrated into systems development methodologies.

3. BACKGROUND AND RELATED WORK
This section summarizes (i) background mechanisms for
DLT, (ii) community consensus mechanisms, e.g. Proof-of-
Work, Proof-of-Stake, Proof-of-Importance, Byzantine
Agreement and Federated Byzantine Agreement, and (iii)
consensus protocols, e.g. Ripple and Stellar.
3.1 Byzantine Fault Tolerance in distributed
systems
BFT algorithm is created to address the Byzantine Generals
Problem, which is a logical dilemma explained in [1]. It
suggests a scenario in which a group of Byzantine generals
and their armies surround an enemy city that they plan to
attack. The attack preparation involves sending a messenger
from one army to the next, because in order to be successful,
all armies must attack at the same time. However, the
generals know that there are one or more traitors involved in

the communication, who will try to confuse the others. The
BFT algorithm ensures that the agreement for attack will not
be compromised through untrustworthy messages. In other
words, it needs to guarantee that (i) all loyal parties decide
upon the same plan of actions, and (ii) a small number of
traitors cannot cause the loyal parties to adopt a bad plan [1].
The potential solutions could range from a solution with oral
messages (every message that is sent is delivered correctly;
the receiver of the message knows who is the sender; the
absence of a message can be detected) to a solution with
signed messages where anyone can verify the authenticity of
the loyal party’s signature.
Similarly, in distributed digital manufacturing environments
with multiple actors, the Byzantine Generals Problem can be
used to simulate the risk of producing incorrect or
inconsistent outputs that can lead to breakdown of the
system. The failures in distributed systems can occur either
as (i) omission failure i.e. not receiving a request, or failing
to respond to a request, and (ii) execution failure, due to
sending incorrect or inconsistent data, or responding to a
request incorrectly. The authors in [1] showed that
Byzantine resilient (fault tolerant) systems that implement
BFT solutions are expensive in traditional networks: they
require significant amounts of time and numbers of
messages in order to guarantee the reliability of the system.
3.2 Distributed Ledger Technology
Distributed Ledger Technology (DLT), commonly called
blockchain, is an emerging distributed data architecture for
processing digital transactions over a business network. It
tracks both tangible (i.e. car, house) and intangible (i.e.
brand, copyright) assets involved in transactions, and
facilitates the process of recording performed transactions. It
can be also seen as a critical enabler of Digital Identity with
the potential to minimize fraud and enable asset provenance
and full transaction history [2]. Other key utilities of DLT
and blockchains are contract management between two
parties involved, regulatory compliance, tokenization for the
authentication of physical items, when the items are paired
with a corresponding digital token. The authors in [2]
emphasize the following benefits of blockchains in financial
scenarios:

• Transaction immutability – eliminates inclusion of an
enforcer of trust in the ecosystem;

• Transparency between all participants – provides
transparency for historical and real time transactions;

• Transaction autonomy – guarantees transaction
execution under mutually agreed conditions and
accelerates business outcomes.

3.3 Community consensus mechanisms
DLT and blockchain uses BFT and community consensus to
legitimate transactions. In blockchain, new transactions are
added into new blocks, to the end of the chain, broadcast to
all the nodes, and can never be changed or removed once
accepted by the network. If members of the community send
inconsistent, inaccurate or malicious transactions
information to others, the reliability of the blockchain breaks

Figure 1. NIMBLE federated instances.

.

down. Hence, the consensus mechanisms are necessary in
blockchain systems, to protect against the Byzantine
Generals Problem. There are several approaches to
consensus mechanisms, supporting both reputation and
trusted identity claims [3]:

• Proof-of-Work (PoW) algorithm [4][5] is designed to
protect against ill-behaviour of the participants who do
not possess the majority of the system’s computing
power. PoW is a basis of Bitcoin, requiring from anyone
who wants to add new information to the blockchain to
perform a work-intensive task, e.g. must use
information from the existing blockchain [6]. PoW
takes a fair amount of time to execute, which guarantees
a practical protection against manipulation of the
blockchain, enjoying a measure of protection against
“51% attacks” [3][7]. An alternative solution for PoW
relies on node votes and majority consensus in order to
root out faults. The downside to this strategy is that it
provides protection against Byzantine faults only as
long as a relatively large majority of nodes on the
blockchain continues to act legitimately [6]. Although
BFT has been studied in Distributed Systems for a long
time, after the Practical BFT (PBFT) was introduced in
1999 [8], there were no practical implementations of
BFT until the emergence of the PoW algorithm.

• Proof-of-Stake (PoS) algorithm [9] calculates consensus
based on parties that have posted some collateral to
prove their value. This opens the possibility of so-called
“nothing at stake” attacks, in which parties that
previously posted some collateral but later spent the
money, can go back and rewrite history from a point
where they still had stake. To mitigate such attacks,
systems combine PoS and PoW, or delay refunding
collateral long enough for some other consensus
mechanism to establish a checkpoint. Some other
approaches based on PoS are Leased Proof-of-Stake
(LPoS) and Delegated Proof-of-Stake (DPoS) [10].
LPoS allows holders to lease their balances to staking
nodes, which increases the weight of the staking nodes
and their chances of being allowed to add a block of
transactions to the blockchain. DPoS enables holders to
use their balances to elect a list of nodes with the
opportunity to stake blocks of new transactions and add
them to the blockchain.

• Byzantine Agreement [11] ensures consensus in a fast
and efficient way, enforcing trust and helping a small
non-profit organization to keep more powerful
organizations, such as banks or CAs, honest.
Complicating matters, however, all parties must agree
on the exact list of participants, and attackers must be
prevented from joining multiple times and exceeding
the system’s failure tolerance.

• Federated Byzantine Agreement (FBA) overcomes
situations in which malicious parties are joining many
times in order to outnumber the well-behaved nodes,
and create the Byzantine General Problem. FBA
determines decentralized quorums by allowing each

node to select quorum slices – individual trust decisions
made by each node that together determine system-level
quorums. FBA avoids complete lists of accepted
participants that are necessary for ensuring consensus
on a system level, and supports open membership that
promotes organic network growth. It also has modest
computing and financial requirements, in comparison to
PoW and PoS.

• Stellar Consensus Protocol allows for solving problems
through reaching consensus among network nodes [3].
It targets individual participants, rather than financial
institutions. Stellar has a strong focus on technology,
and uses an API based on the External Data
Representation (XDR) standard [12].

4. FEDERATED BYZANTINE
AGREEMENT FOR TRUST AND
REPUTATION IN BUSINESS PLATFORMS
Since in decentralized and distributed systems there are no
central authorities to govern interactions and agreements
between participants, trust and reputation of participant
parties is still a major challenge. Similar problems occur in
federated ecosystems, where low entry barriers should spur
the organic growth of the systems. The NIMBLE platform is
designed to support collaboration between companies
interacting with each another on a daily basis, and here, trust
and reputation are becoming major concerns.

To support trustworthiness between companies registered in
one platform instance and collaborating with other
companies either from the same instance or from another
NIMBLE instance, it could be necessary to associate a
federated identity to each company and provide appropriate
mechanisms which allow multiple authorities to access and
validate globally recognized entities. Depending on the
business context, federated identities can vary and have a
different representation across platform instances. Hence
certain collaboration scenarios may require additional
authentication and verification mechanisms.

Furthermore, it would be necessary to make a clear
distinction between delegated identities and federated
identities. In a system with delegated identities, the identity
management is outsourced to another system, while in a
system with federated identities, every participant can keep
its own entity information in multiple nodes (e.g. NIMBLE
instances). In the following, we explore the applicability of
FBA to ensure trust and reputation between the platform
instances and their participants in the NIMBLE ecosystem.

4.1 FBA background mechanisms
In FBA, a consensus protocol ensures that all participants
agree on updating a replicated state that is called slot (e.g.
transaction ledger), which helps participants to avoid
contradictory states [3]. Each participant in the FBA system
can safely apply update x in a specific slot when it has safely
applied updates in all other slots upon which a specific slot
depends, and when it believes that all other participants will

agree on update x for that specific slot. In FBA language, this
is described as “participant has externalized update x for a
specific slot”.

4.1.1 Quorum slices and quorum intersections
Agreement in FBA is accomplished by allowing every
participant to decide on its own set of trusted neighbors,
some of which may exhibit various types of non-rational
behavior e.g. malicious behavior, unavailability, random
errors, etc. A set of participants that is sufficient to reach
agreement is called quorum, while a quorum slice is a subset
of the quorum that can be selected based on arbitrary criteria,
e.g. reputation or financial arrangements [3]. A participant
agrees to a specific statement if there exists at least one
quorum slice, which also agrees to the same statement.
Another important property for ensuring the safety of an
FBA-based system is quorum intersection. If a system lacks
quorum intersection, quorums can independently agree on
contradictory statements. In other words, quorum
intersection exists iff any two of quorums share at least one
node [3].

4.1.2 Tiered quorum in federated platforms
In NIMBLE, we apply a tiered quorum structure, in which
each platform instance is represented by a node (see Figure
2). The top-level tier is composed of instances (e.g. ESP-1
(Spain), IT-1 (Italy), and D-1 (Germany)), which are
governed by well-known and trusted state authorities and,
therefore, enjoy a high level of trust. In the example in Figure
2, every top-level node agrees to a statement iff at least two
other nodes at the same level agree on the same statement.
Sub-level tiers are constituted from nodes within a specific
country (e.g. ESP-2, ESP-3, ESP-4, ESP-5), and must find
trust from at least one node in the top-level tier.

The above presented tiered architecture increases trust, since
at least two instances from the top-level are necessary to
ensure system-wide agreements. In addition, not every
single instance needs to be constantly available, which
results in a more fault-tolerant system. FBA guarantees that
all well-behaving nodes will externalize the same statement
even in the presence of ill-behaved nodes.

4.2 FBA consensus phases
Agreement to a specific statement c requires the exchange of
messages between participants (nodes) (Figure 3). The

process of consensus at the level of a single node evolves in
three phases, from (i) unknown, when nodes “vote for
statement c”, via (ii) accepted, when two nodes either
succeed in agreement or show that statement c is
contradictory, to (iii) confirmed, when both nodes send

acceptance messages and confirm that statement c is true.
4.2.1 Federated statement acceptance
Federated agreement at a system-wide level allows open
membership, but this set-up bears the risk that a majority of
well-behaved nodes can be broken. The challenge here is for
the well-behaved nodes to discover ill-behaved ones and to
arrive at a quorum intersection of well-behaved nodes. In
FBA, there is a term called v-blocking that identifies failed
nodes (Figure 3) [3].

4.2.2 Federated statement confirmation
Statement confirmation means that a node v claims to accept
statement c and confirms c iff an intact node v enjoys a
quorum intersection. According to Theorem 11 in [3], once
sufficient messages are delivered and checked, every intact
node v will accept and confirm statement c.
4.3 FBA safety, liveness and fault tolerance
A distributed consensus protocol has to ensure system-wide
safety, liveness and fault tolerance [3]. Safety is achieved if
all correct instances agree or disagree on a certain statement
that was initially proposed by one of the instances. The SCP
solves this issue by attaching full sets of quorum slices to
each propagated message.
Another important feature of the protocol is known as
liveness of the system. In an FBA system, participants are
not allowed to change their decisions for a statement after it
was distributed to other participants. This may lead to a
situation where an agreement on a statement gets stuck.
Therefore, the consensus protocol has to ensure that the
system agrees or disagrees with a statement after a finite
amount of time. The SCP supports a federated voting
mechanism (see Section 4.2), with voting of the nodes
starting in a bivalent state (neither agrees nor disagrees with
a). After enough votes were cast the state of the system
changes to either a-valent (nodes vote for statement c) or a
contradicting ā-valent state (nodes vote against statement c).
The system can also end up in a stuck state, when it is not
capable of finding a solution, due to the fact that nodes are
not allowed to change their votes in a later phase. The SCP

Figure 2. Tiered quorum structure for ensuring
trust between federated instances in NIMBLE.

.

Figure 3. The consensus phases and agreement of an
accepted statement c at a single node ESP-1.

.

[3] avoids stuck states by applying neutralizable statements,
which overcomes this problem.
The third feature of the protocol is known as fault tolerance.
At any point in the execution of the protocol, the system
should be able to recover from a failure of a node.

The authors in [8] present a fail-stop model that describes
situations where a node crashes and stops sending messages
to other nodes. In BFT, it can be assumed that nodes fail by
behaving arbitrarily, e.g. the node is taken over by an
attacker and sends compromising messages to the system.

5. BRINGING STELLAR COSENSUS TO
FEDERATED BUSINESS PLATFORMS
Our objective is to enable a federated system like NIMBLE
to agree on statements in a decentralized manner. The role
of SCP is to define well-structured communication and
message exchange between distributed platform instances
and their participants. Figure 4 illustrates the message flow
between application logic and Stellar consensus logic.

A specific NIMBLE platform instance in Spain, ESP-1 in
Figure 4, is in the process of negotiating logistics details with
a partner organization in Italy. To check trustworthiness of
that partner, ESP-1 needs to submit a transaction to SCP. If
ESP-1 is an external client to SCP submitting this new
transaction, SCP contacts peers (through HTTP), submits an
XDR transaction representation, and ESP-1 receives a status
code of either “rejected” or “pending” [13]. If ESP-1 is not
an external client to SCP but peer that already holds TCP
connections to other peers, it has already defined quorum
slices at the country level (top level tier). ESP-1 submits a

transaction message in XDR format which is repeated to all
peers (called “flooding” in [13]). SCP decides on the
consensus state and the results are recorded in the SCP Log
Archive (in XDR format) and sent back to the application (in
our case, the NIMBLE negotiation service).
5.1 Embedded Architectural Components
Implementing SCP in NIMBLE requires several components
to be added to the existing microservice architecture of the
NIMBLE platform. Figure 5 shows the composition of the
consensus component (green) and the platform services
(red). Each consensus component will be realised in loosely

Figure 4. The message flow between NIMBLE application logic and Stellar consensus logic.

coupled units, with inter-component communication
executed via HTTP. The Consensus Logic component
exchanges votes with other instances in the federated
network and manages the formation of a quorum.

Platform services, e.g. Identity Service and Negotiation
Service, communicate with the Consensus Logic in order to
find system-wide agreements for new statements.
Configurable metadata of individual nodes is saved in the
Consensus Configuration component, whose role is also to
provide necessary information (i.e. quorum slices) for
finding consensus. Metadata of nodes is at the same time
shared internally with the consensus logic and is publicly
available for other nodes. Each agreement is stored in the
History Archive, which provides historical information for
synchronising new nodes in the network.
6. CONCLUSION
The federated nature of the NIMBLE collaboration platform
poses design and development challenges, related to data
and message sharing strategies, security and privacy of data
and controlled data access across the platform. In this paper,
we have explored federated consensus principles based on
FBA, supporting open membership in NIMBLE. We have
explored data flow between NIMBLE services and SCP
mechanisms, and identified important components for
implementation of SCP in federated ecosystems.

ACKNOWLEDGMENTS
This research has been funded by the European Commission
within the H2020 project NIMBLE, No. 723810, for the
period between 01 October 2016 - 31 September 2019.

7. REFERENCES
[1] L. Lamport, R. Shostak, and M. Pease, 1982. The Byzantine

Generals Problem. ACM Transactions on Programming Lang.
and Sys., Vol. 4, No. 3,382—401.

[2] McWaters, R.J., 2016. The future of Financial Infrastructure.
World Economic Forum 2016. Online:
http://www3.weforum.org/docs/WEF_The_future_of_financi
al_infrastructure.pdf Last accessed March 2018.

[3] Mazières, D., 2015. The Stellar Consensus Protocol: A
Federated Model for Internet-level Consensus. Online:
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
Last accessed in March 2018.

[4] Dwork, C., Lynch, N. and Stockmeyer, L, 1988. Consensus in
the Presence of Partial Synchrony. Journal of the ACM 35, pp.
288–323.

[5] Dwork, C. and Naor, M., 1992. Pricing via Processing or
Combatting Junk Mail. In Proceedings of the 12th Annual
International Cryptology Conference on Advances in
Cryptology, pp. 139–147.

[6] C. Tozzi, 2017. Byzantine Fault Tolerance: The Key for
Blockchain. Online available from:
https://www.nasdaq.com/article/byzantine-fault-tolerance-
the-key-for-blockchains-cm810058

[7] Eyal, I. and Sirer, E.G., 2013. Majority is not Enough: Bitcoin
Mining is Vulnerable. Online available from:
http://arxiv.org/abs/1311.0243 Last access Feb. 2018.

[8] Castro, M. and Liskov, B., 1999. Practical Byzantine Fault
Tolerance. In Proceedings of the 3rd Symposium on Operating
Sys. Design and Implem., pp. 173–186.

[9] King, S. and Nadal, S, 2012. PPCoin: Peer-to-Peer Crypto-
Currency with Proof-of-Stake. Online:
http://peercoin.net/assets/paper/peercoin-paper.pdf.

[10] Kostarev, G., 2017. Review of Blockchain Consensus
Mechanisms, Waves Platform. Online available:
https://blog.wavesplatform.com/review-of-blockchain-
consensus-mechanisms-f575afae38f2 Accessed 2018.

[11] Pease, M., Shostak, R., and Lamport, L., 1980. Reaching
Agreement in the Presence of Faults. Journal of the ACM 27,
228–234.

[12] External Data Representation (XDR) Standard. Online:
https://tools.ietf.org/html/rfc4506.html

[13] Stellar Core Data Flow. Online available from:
https://www.stellar.org/developers/stellar-core/software/core-
data-flow.pdf

Figure 5. Consensus components embedded in the
NIMBLE architecture.

