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ABSTRACT 
In this paper, we explore the use of the Stellar Consensus 
Protocol (SCP) and its Federated Byzantine Agreement 
(FBA) algorithm for ensuring trust and reputation between 
federated, cloud-based platform instances (nodes) and their 
participants. Our approach is grounded on federated 
consensus mechanisms, which promise data quality 
managed through computational trust and data replication, 
without a centralized authority. We perform our 
experimentation on the ground of the NIMBLE cloud 
manufacturing platform, which is designed to support 
growth of B2B digital manufacturing communities and their 
businesses through federated platform services, managed by 
peer-to-peer networks. We discuss the message exchange 
flow between the NIMBLE application logic and Stellar 
consensus logic.  

CCS Concepts 
• Security and privacy➝System security➝Distributed 
system security • Security and privacy➝Network 
security➝Security protocols.  
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1. INTRODUCTION 
One of the major challenges of federated digital 
manufacturing platforms is to ensure trust between platform 
instances (nodes) and their participants, in a way that 
enforces trustworthiness of collaboration platforms, the 
integrity of performed actions and measurements, and 
correctness of their recording, which further encourages new 
organizations to join and extend their businesses to new 
collaboration models and new communities. Since some of 
the key benefits of the Distributed Ledger Technology relate 
to trust and transaction acceleration for the Internet of 
Things (IoT), in this paper, we explore the use of distributed 
ledgers and consensus protocols to ensure trust and 
reputation between various participants collaborating via the 
NIMBLE collaborative manufacturing platform. The 
development of NIMBLE is funded through the EU H2020 
programme (website: https://www.nimble-project.org/), and 
it is designed as a federated, cloud-based collaborative 
platform for multi-sided B2B trade and enterprises. The 

platform supports business process negotiation and 
subsequent execution, between manufacturers, suppliers, 
service and logistics providers, software and cloud service 
providers, and retailers. Its business models require 
contractual relationships between all participants and their 
services affiliated with the platform.  For each instance, the 
platform provides a set of services and offers additional, 
specifically tailored services for interoperation at regional, 
sectorial or topical levels.  

The federated nature of the platform increases the 
complexity and range of enterprise interoperation, creating 
new business opportunities, reducing the need for traditional 
practices (e.g. financial, regulatory), but many issues are as 
yet, unresolved, e.g. those related to trust and reputation of 
the participants, data manipulation and integrity, jammed 
communication and spoofing. Hence, in this paper we 
explore the applicability of distributed trust algorithms to 
maintain agreement and trust through the NIMBLE 
distributed network and supply chains. Specifically, we 
explore the use of a consensus mechanism that employs the 
Federated Byzantine Agreement (FBA) algorithm, which is 
implemented within the Stellar consensus protocol (website: 
https://www.stellar.org/).  

Paper organization. Section 2 briefly describes our 
motivation to explore the potential of Distributed Ledger 
Technology and federated consensus mechanisms for 
establishing secure and valid interoperation between 
federated platform instances. Section 3 reviews trust 
mechanisms in distributed systems, which are used for 
sharing content that is collectively confirmed (agreed) 
through the consensus. Here, we look at the Byzantine Fault 
Tolerance (BFT) mechanism, Distributed Ledger 
Technology (DLT) and a variety of existing community 
consensus mechanisms. Section 4 introduces the FBA 
algorithm for trust and reputation in NIMBLE. Section 5 
illustrates the message flow between the Stellar Consensus 
Protocol (SCP) and NIMBLE applications. Section 6 
presents our conclusions. 
 

2. MOTIVATION 
NIMBLE offers the technology for establishing a multi-
sided federation of digital platforms, enabling 
communication and collaboration between the various 



country-, regional- or topic-centered platform instances and 
participants. For example, Figure 1 shows NIMBLE 
platform instances in three countries, Germany, Italy and 
Spain. The overall platform architecture topology is 
distributed, and requires non-centralized algorithms to 
compute trust and reputation through a federated ecosystem. 

 

One of the platform’s requirement towards a federated 
ecosystem is to support open membership enabling new 
organizations with modest resources to join the platform, to 
extend their businesses to new communities, and to create 
innovative business models through collaborations, and thus 
fulfill their aspirations for economic growth. The main 
challenge for such a business ecosystem is to ensure that 
participants’ actions and transactions via the platform are 
recorded correctly in order to achieve trustworthiness at the 
system level. Distributed Ledger Technologies and fault 
tolerant system behavior are new elements that need to be 
integrated into systems development methodologies.  

3. BACKGROUND AND RELATED WORK 
This section summarizes (i) background mechanisms for 
DLT, (ii) community consensus mechanisms, e.g. Proof-of-
Work, Proof-of-Stake, Proof-of-Importance, Byzantine 
Agreement and Federated Byzantine Agreement, and (iii) 
consensus protocols, e.g. Ripple and Stellar.  
3.1 Byzantine Fault Tolerance in distributed 
systems  
BFT algorithm is created to address the Byzantine Generals 
Problem, which is a logical dilemma explained in [1]. It 
suggests a scenario in which a group of Byzantine generals 
and their armies surround an enemy city that they plan to 
attack. The attack preparation involves sending a messenger 
from one army to the next, because in order to be successful, 
all armies must attack at the same time. However, the 
generals know that there are one or more traitors involved in 

the communication, who will try to confuse the others. The 
BFT algorithm ensures that the agreement for attack will not 
be compromised through untrustworthy messages. In other 
words, it needs to guarantee that (i) all loyal parties decide 
upon the same plan of actions, and (ii) a small number of 
traitors cannot cause the loyal parties to adopt a bad plan [1]. 
The potential solutions could range from a solution with oral 
messages (every message that is sent is delivered correctly; 
the receiver of the message knows who is the sender; the 
absence of a message can be detected) to a solution with 
signed messages where anyone can verify the authenticity of 
the loyal party’s signature.  
Similarly, in distributed digital manufacturing environments 
with multiple actors, the Byzantine Generals Problem can be 
used to simulate the risk of producing incorrect or 
inconsistent outputs that can lead to breakdown of the 
system. The failures in distributed systems can occur either 
as (i) omission failure i.e. not receiving a request, or failing 
to respond to a request, and (ii) execution failure, due to 
sending incorrect or inconsistent data, or responding to a 
request incorrectly. The authors in [1] showed that 
Byzantine resilient (fault tolerant) systems that implement 
BFT solutions are expensive in traditional networks: they 
require significant amounts of time and numbers of 
messages in order to guarantee the reliability of the system.  
3.2 Distributed Ledger Technology 
Distributed Ledger Technology (DLT), commonly called 
blockchain, is an emerging distributed data architecture for 
processing digital transactions over a business network. It 
tracks both tangible (i.e. car, house) and intangible (i.e. 
brand, copyright) assets involved in transactions, and 
facilitates the process of recording performed transactions. It 
can be also seen as a critical enabler of Digital Identity with 
the potential to minimize fraud and enable asset provenance 
and full transaction history [2]. Other key utilities of DLT 
and blockchains are contract management between two 
parties involved, regulatory compliance, tokenization for the 
authentication of physical items, when the items are paired 
with a corresponding digital token. The authors in [2] 
emphasize the following benefits of blockchains in financial 
scenarios:  

• Transaction immutability – eliminates inclusion of an 
enforcer of trust in the ecosystem; 

• Transparency between all participants – provides 
transparency for historical and real time transactions;  

• Transaction autonomy – guarantees transaction 
execution under mutually agreed conditions and 
accelerates business outcomes.  

3.3 Community consensus mechanisms  
DLT and blockchain uses BFT and community consensus to 
legitimate transactions. In blockchain, new transactions are 
added into new blocks, to the end of the chain, broadcast to 
all the nodes, and can never be changed or removed once 
accepted by the network. If members of the community send 
inconsistent, inaccurate or malicious transactions 
information to others, the reliability of the blockchain breaks 

Figure 1. NIMBLE federated instances. 
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down. Hence, the consensus mechanisms are necessary in 
blockchain systems, to protect against the Byzantine 
Generals Problem. There are several approaches to 
consensus mechanisms, supporting both reputation and 
trusted identity claims [3]: 

• Proof-of-Work (PoW) algorithm [4][5] is designed to 
protect against ill-behaviour of the participants who do 
not possess the majority of the system’s computing 
power. PoW is a basis of Bitcoin, requiring from anyone 
who wants to add new information to the blockchain to 
perform a work-intensive task, e.g. must use 
information from the existing blockchain [6]. PoW 
takes a fair amount of time to execute, which guarantees 
a practical protection against manipulation of the 
blockchain, enjoying a measure of protection against 
“51% attacks” [3][7]. An alternative solution for PoW 
relies on node votes and majority consensus in order to 
root out faults. The downside to this strategy is that it 
provides protection against Byzantine faults only as 
long as a relatively large majority of nodes on the 
blockchain continues to act legitimately [6]. Although 
BFT has been studied in Distributed Systems for a long 
time, after the Practical BFT (PBFT) was introduced in 
1999 [8], there were no practical implementations of 
BFT until the emergence of the PoW algorithm. 

• Proof-of-Stake (PoS) algorithm [9] calculates consensus 
based on parties that have posted some collateral to 
prove their value. This opens the possibility of so-called 
“nothing at stake” attacks, in which parties that 
previously posted some collateral but later spent the 
money, can go back and rewrite history from a point 
where they still had stake. To mitigate such attacks, 
systems combine PoS and PoW, or delay refunding 
collateral long enough for some other consensus 
mechanism to establish a checkpoint. Some other 
approaches based on PoS are Leased Proof-of-Stake 
(LPoS) and Delegated Proof-of-Stake (DPoS) [10]. 
LPoS allows holders to lease their balances to staking 
nodes, which increases the weight of the staking nodes 
and their chances of being allowed to add a block of 
transactions to the blockchain. DPoS enables holders to 
use their balances to elect a list of nodes with the 
opportunity to stake blocks of new transactions and add 
them to the blockchain. 

• Byzantine Agreement [11] ensures consensus in a fast 
and efficient way, enforcing trust and helping a small 
non-profit organization to keep more powerful 
organizations, such as banks or CAs, honest. 
Complicating matters, however, all parties must agree 
on the exact list of participants, and attackers must be 
prevented from joining multiple times and exceeding 
the system’s failure tolerance. 

• Federated Byzantine Agreement (FBA) overcomes 
situations in which malicious parties are joining many 
times in order to outnumber the well-behaved nodes, 
and create the Byzantine General Problem. FBA 
determines decentralized quorums by allowing each 

node to select quorum slices – individual trust decisions 
made by each node that together determine system-level 
quorums. FBA avoids complete lists of accepted 
participants that are necessary for ensuring consensus 
on a system level, and supports open membership that 
promotes organic network growth. It also has modest 
computing and financial requirements, in comparison to 
PoW and PoS.  

• Stellar Consensus Protocol allows for solving problems 
through reaching consensus among network nodes [3]. 
It targets individual participants, rather than financial 
institutions. Stellar has a strong focus on technology, 
and uses an API based on the External Data 
Representation (XDR) standard [12].  

4. FEDERATED BYZANTINE 
AGREEMENT FOR TRUST AND 
REPUTATION IN BUSINESS PLATFORMS  
Since in decentralized and distributed systems there are no 
central authorities to govern interactions and agreements 
between participants, trust and reputation of participant 
parties is still a major challenge. Similar problems occur in 
federated ecosystems, where low entry barriers should spur 
the organic growth of the systems. The NIMBLE platform is 
designed to support collaboration between companies 
interacting with each another on a daily basis, and here, trust 
and reputation are becoming major concerns.  

To support trustworthiness between companies registered in 
one platform instance and collaborating with other 
companies either from the same instance or from another 
NIMBLE instance, it could be necessary to associate a 
federated identity to each company and provide appropriate 
mechanisms which allow multiple authorities to access and 
validate globally recognized entities. Depending on the 
business context, federated identities can vary and have a 
different representation across platform instances. Hence 
certain collaboration scenarios may require additional 
authentication and verification mechanisms.  

Furthermore, it would be necessary to make a clear 
distinction between delegated identities and federated 
identities. In a system with delegated identities, the identity 
management is outsourced to another system, while in a 
system with federated identities, every participant can keep 
its own entity information in multiple nodes (e.g. NIMBLE 
instances). In the following, we explore the applicability of 
FBA to ensure trust and reputation between the platform 
instances and their participants in the NIMBLE ecosystem.    

4.1 FBA background mechanisms 
In FBA, a consensus protocol ensures that all participants 
agree on updating a replicated state that is called slot (e.g. 
transaction ledger), which helps participants to avoid 
contradictory states [3]. Each participant in the FBA system 
can safely apply update x in a specific slot when it has safely 
applied updates in all other slots upon which a specific slot 
depends, and when it believes that all other participants will 



agree on update x for that specific slot. In FBA language, this 
is described as “participant has externalized update x for a 
specific slot”.  

4.1.1 Quorum slices and quorum intersections  
Agreement in FBA is accomplished by allowing every 
participant to decide on its own set of trusted neighbors, 
some of which may exhibit various types of non-rational 
behavior e.g. malicious behavior, unavailability, random 
errors, etc. A set of participants that is sufficient to reach 
agreement is called quorum, while a quorum slice is a subset 
of the quorum that can be selected based on arbitrary criteria, 
e.g. reputation or financial arrangements [3]. A participant 
agrees to a specific statement if there exists at least one 
quorum slice, which also agrees to the same statement. 
Another important property for ensuring the safety of an 
FBA-based system is quorum intersection. If a system lacks 
quorum intersection, quorums can independently agree on 
contradictory statements. In other words, quorum 
intersection exists iff any two of quorums share at least one 
node [3].  

4.1.2 Tiered quorum in federated platforms  
In NIMBLE, we apply a tiered quorum structure, in which 
each platform instance is represented by a node (see Figure 
2). The top-level tier is composed of instances (e.g. ESP-1 
(Spain), IT-1 (Italy), and D-1 (Germany)), which are 
governed by well-known and trusted state authorities and, 
therefore, enjoy a high level of trust. In the example in Figure 
2, every top-level node agrees to a statement iff at least two 
other nodes at the same level agree on the same statement. 
Sub-level tiers are constituted from nodes within a specific 
country (e.g. ESP-2, ESP-3, ESP-4, ESP-5), and must find 
trust from at least one node in the top-level tier.  

 

The above presented tiered architecture increases trust, since 
at least two instances from the top-level are necessary to 
ensure system-wide agreements. In addition, not every 
single instance needs to be constantly available, which 
results in a more fault-tolerant system. FBA guarantees that 
all well-behaving nodes will externalize the same statement 
even in the presence of ill-behaved nodes.  

4.2 FBA consensus phases 
Agreement to a specific statement c requires the exchange of 
messages between participants (nodes) (Figure 3). The 

process of consensus at the level of a single node evolves in 
three phases, from (i) unknown, when nodes “vote for 
statement c”, via (ii) accepted, when two nodes either 
succeed in agreement or show that statement c is 
contradictory, to (iii) confirmed, when both nodes send 

acceptance messages and confirm that statement c is true.  
4.2.1 Federated statement acceptance 
Federated agreement at a system-wide level allows open 
membership, but this set-up bears the risk that a majority of 
well-behaved nodes can be broken. The challenge here is for 
the well-behaved nodes to discover ill-behaved ones and to 
arrive at a quorum intersection of well-behaved nodes. In 
FBA, there is a term called v-blocking that identifies failed 
nodes (Figure 3) [3]. 

4.2.2 Federated statement confirmation  
Statement confirmation means that a node v claims to accept 
statement c and confirms c iff an intact node v enjoys a 
quorum intersection. According to Theorem 11 in [3], once 
sufficient messages are delivered and checked, every intact 
node v will accept and confirm statement c.  
4.3 FBA safety, liveness and fault tolerance  
A distributed consensus protocol has to ensure system-wide 
safety, liveness and fault tolerance [3]. Safety is achieved if 
all correct instances agree or disagree on a certain statement 
that was initially proposed by one of the instances. The SCP 
solves this issue by attaching full sets of quorum slices to 
each propagated message.  
Another important feature of the protocol is known as 
liveness of the system. In an FBA system, participants are 
not allowed to change their decisions for a statement after it 
was distributed to other participants. This may lead to a 
situation where an agreement on a statement gets stuck. 
Therefore, the consensus protocol has to ensure that the 
system agrees or disagrees with a statement after a finite 
amount of time. The SCP supports a federated voting 
mechanism (see Section 4.2), with voting of the nodes 
starting in a bivalent state (neither agrees nor disagrees with 
a). After enough votes were cast the state of the system 
changes to either a-valent (nodes vote for statement c) or a 
contradicting ā-valent state (nodes vote against statement c). 
The system can also end up in a stuck state, when it is not 
capable of finding a solution, due to the fact that nodes are 
not allowed to change their votes in a later phase. The SCP 

Figure 2. Tiered quorum structure for ensuring 
trust between federated instances in NIMBLE. 
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Figure 3. The consensus phases and agreement of an 
accepted statement c at a single node ESP-1. 
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[3] avoids stuck states by applying neutralizable statements, 
which overcomes this problem.  
The third feature of the protocol is known as fault tolerance. 
At any point in the execution of the protocol, the system 
should be able to recover from a failure of a node. 

The authors in [8] present a fail-stop model that describes 
situations where a node crashes and stops sending messages 
to other nodes. In BFT, it can be assumed that nodes fail by 
behaving arbitrarily, e.g. the node is taken over by an 
attacker and sends compromising messages to the system. 

5. BRINGING STELLAR COSENSUS TO 
FEDERATED BUSINESS PLATFORMS 
Our objective is to enable a federated system like NIMBLE 
to agree on statements in a decentralized manner. The role 
of SCP is to define well-structured communication and 
message exchange between distributed platform instances 
and their participants. Figure 4 illustrates the message flow 
between application logic and Stellar consensus logic. 

 
 
 
A specific NIMBLE platform instance in Spain, ESP-1 in 
Figure 4, is in the process of negotiating logistics details with 
a partner organization in Italy. To check trustworthiness of 
that partner, ESP-1 needs to submit a transaction to SCP. If 
ESP-1 is an external client to SCP submitting this new 
transaction, SCP contacts peers (through HTTP), submits an 
XDR transaction representation, and ESP-1 receives a status 
code of either “rejected” or “pending” [13]. If ESP-1 is not 
an external client to SCP but peer that already holds TCP 
connections to other peers, it has already defined quorum 
slices at the country level (top level tier). ESP-1 submits a 

transaction message in XDR format which is repeated to all 
peers (called “flooding” in [13]). SCP decides on the 
consensus state and the results are recorded in the SCP Log 
Archive (in XDR format) and sent back to the application (in 
our case, the NIMBLE negotiation service). 
5.1 Embedded Architectural Components 
Implementing SCP in NIMBLE requires several components 
to be added to the existing microservice architecture of the 
NIMBLE platform. Figure 5 shows the composition of the 
consensus component (green) and the platform services 
(red). Each consensus component will be realised in loosely 

Figure 4. The message flow between NIMBLE application logic and Stellar consensus logic. 
 



coupled units, with inter-component communication 
executed via HTTP. The Consensus Logic component 
exchanges votes with other instances in the federated 
network and manages the formation of a quorum. 
 
 
 

Platform services, e.g. Identity Service and Negotiation 
Service, communicate with the Consensus Logic in order to 
find system-wide agreements for new statements. 
Configurable metadata of individual nodes is saved in the 
Consensus Configuration component, whose role is also to 
provide necessary information (i.e. quorum slices) for 
finding consensus. Metadata of nodes is at the same time 
shared internally with the consensus logic and is publicly 
available for other nodes. Each agreement is stored in the 
History Archive, which provides historical information for 
synchronising new nodes in the network. 
6. CONCLUSION 
The federated nature of the NIMBLE collaboration platform 
poses design and development challenges, related to data 
and message sharing strategies, security and privacy of data 
and controlled data access across the platform. In this paper, 
we have explored federated consensus principles based on 
FBA, supporting open membership in NIMBLE. We have 
explored data flow between NIMBLE services and SCP 
mechanisms, and identified important components for 
implementation of SCP in federated ecosystems.  
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