
Towards Blockchain-enabled Wireless Mesh Networks
Mennan Selimi

University of Cambridge and
Ammbr Research Labs

Cambridge, UK

Aniruddh Rao Kabbinale
University of Cambridge

Cambridge, UK

Anwaar Ali
University of Cambridge

Cambridge, UK

Leandro Navarro
UPC BarcelonaTech and
Ammbr Research Labs

Barcelona, Spain

Arjuna Sathiaseelan
Ammbr Research Labs

Cambridge, UK

ABSTRACT
Recently, mesh networking and blockchain are two of the
hottest technologies in the telecommunications industry.
Combining both can reformulate Internet access. While
mesh networking makes connecting to the Internet easy
and affordable, blockchain on top of mesh networks makes
Internet access profitable by enabling bandwidth-sharing
for crypto-tokens. Hyperledger Fabric (HLF) is a blockchain
framework implementation and one of the Hyperledger
projects hosted by The Linux Foundation. We evaluate HLF
in a real production mesh network and in the laboratory. We
quantify the performance, bottlenecks and limitations of the
current implementation v1.0. We identify the opportunities
for improvement to serve the needs of wireless mesh access
networks. To the best of our knowledge, this is the first HLF
deployment made in a production wireless mesh network.

1 INTRODUCTION
Network infrastructure is critical to provide local and global
connectivity that enables access to information, social
inclusion and participation for everyone. Local connectivity
largerly relies on access networks. Wireless mesh networks
(WMNs) are a kind of access networks comprising of wireless
nodes namely wireless mesh routers and wireless mesh clients.
A client (irrespective of whether it is a mesh or a generic
client) can access the Internet through a WMN [1].

Community networks are network infrastructure commons,
built by citizens and organizations which pool their resources
and coordinate their efforts, characterized by being open, free
and neutral [5].

Community Mesh Networks (CMNs) are a special case of
WMNs which are usually setup as a community network. The
CMNs have been identified as one of the models contributing
to connecting the next billion people that are still without

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific per-
mission and/or a fee. Request permissions from permissions@acm.org.
CryBlock’18, June 15, 2018, Munich, Germany
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5838-5/18/06. . . $15.00
https://doi.org/10.1145/3211933.3211936

the Internet access [9]. Guifi.net1 is an example of such a com-
munity effort which is one of the biggest community networks
in the world, with more than 34,000 participating routers.

The idea of CMNs, nobel as it seems, does not come with
out its fair caveats. Since the nature of CMNs is peer-to-peer
there are concerns related to trust among various participating
peers and how to make this volunteer effort economically
viable and sustainable as well [3].

As an example scenario we consider the economic compen-
sation system in Guifi.net [3]. The idea of the compensation
system is to create a balance between total resource con-
tribution and its consumption. The economic value of the
contribution and consumption of network resources for each
participant in a given locality are recorded. The overall
result is a zero-sum budget where the participants with
over-consumption or negative balances, have to compensate
those with over-contribution or positive balances.

Currently the above described economic compensation
system is managed manually. What this means is that a
participant puts forward claim of its consumption and
then the Guifi.net foundation2 validates this claim by cross
checking it with their own network traffic measurement data
and network inventory. Any disparities between these two
records are flagged. There is, however, room for errors or
even malicious activities such as false claims put forward
by a participant, the recorded data being tampered with,
or simply mistrust among the parties. There is a need for a
system where participants can trust that the consumption of
resources is being accounted in a fair manner, and that these
calculations and money transfers are done automatically to
avoid the cost, delays, errors and potential mistrust from
manual accounting and external payments.

Blockchain is one of the solutions that seems quite apt
to make the peer-to-peer nature of CMNs trusted and
economically sustainable. Blockchain (more details in Section
2) is an immutable and distributed data storage without the
provision of retrospective mutation in data records. However,
most blockchain networks are open and permissionless that
encourage the users to be anonymous [10]. This implies that
anyone, without revealing their true identity, can be part of

1https://guifi.net/
2https://fundacio.guifi.net/Foundation

1

https://doi.org/10.1145/3211933.3211936
https://guifi.net/
https://fundacio.guifi.net/Foundation

CryBlock’18, June 15, 2018, Munich, Germany Selimi.et al.

such a network and make transactions with another similarly
anonymous peer of the network.

In the perspective of CMNs, however, such as in Guifi.net
every participant who joins the network to contribute to the
infrastructure must first register its identity and the identity
of the resources that it contributes to the wider pool. This is
particularly needed so that a malicious entity, such as hidden
nodes in Guifi.net used by other ISPs to provide services to
their users, can be filtered out [11]. Because of such registration
process one also needs an efficient identity mechanism on
top of blockchain’s immutable record keeping. Permissioned
blockhains are part of such solutions. These blockchain
solutions are mostly envisioned for business networks where
there is often a stringent requirement of know your customer in
addition to keeping the intra- and inter-business transactions
confidential. Hyperledger3 (see Section 2.1 for details) is
one such solution that realises the concept of permissioned
blockchains and one which we also use in our current study.

In this study we explore combining CMNs with a permis-
sioned blockchain that can result in decentralized mesh access
networks that make connecting to the Internet not only easy
and widespread, but trustful and more economical as well.

Our key contributions are summarized as follows:
∙ First, we deploy the HLF platform in a production wire-

less mesh network that is part of Guifi.net. We quantify
the performance of the platform in terms of different
metrics such as transaction confirmation/completion
latency, CPU utilization and memory utilization of
HLF components. To the best of our knowledge, this is
the first HLF deployment made in a production wireless
mesh network.

∙ Second, driven by the findings in a mesh network, we
propose a placement scheme for HLF components that
optimizes the performance of the blockchain protocol.

2 BLOCKCHAIN:
THE UNDERPINNING TECHNOLOGY

Blockchain is an append-only immutable data structure. Its
first incarnation was in the Bitcoin cryptocurrency network
[10]. Blockchain was used to enable trust in financial trans-
actions among different non-trusting parties in a pure peer-
to-peer fashion without the need for going through a third
financial party like e.g., a bank. Such trust is provided in terms
of immutability of blockchain’s data structure. Each block in
blockchain contains information that is immutable. The im-
mutability aspect is rendered true by including the hash of all
the contents of a block into the next block which also chains the
blocks together. Tampering with one block disturbs the con-
tents of all the following blocks in the chain. Each block in the
chain is appended after a consensus is reached among all the
peers of the network. The same version of a blockchain is stored
in a distributed manner at all the peers of the network. That
is why it is sometimes referred to as distributed ledger as well.

3https://www.hyperledger.org/

2.0.1 Open and public blockchains. Blockchain of Bitcoin
[10], Ethereum4 [15], and in general of various other cyp-
tocurrencies are mostly open and public. This means that
anyone can be a part of the blockchain’s network and make
transactions with other parties. Some degree of anonymity
is also at the heart of such platforms. A user (or in general an
entity) usually uses the hash of its public key as its identifier
as opposed to using its real-world credentials. In the aspect of
openness the permissioned blockchains are in sharp contrast
with public blockchains which we discuss next.

2.0.2 Permissioned blockchains. Permissioned blockchains,
a concept particularly popularized by the Linux Foundation’s
Hyperledger, are usually considered for business applications.
In such applications the identity of users, in addition to
trusted and immutable data storage, is also important such
as the stringent requirement of know your customers for
many businesses. Hyperledger tries to leverage the best of
both worlds by implementing a cryptographic membership
service on top of blockchain’s trusted, immutable, and
distributed record keeping. In our study the requirement
of both users’ identity and trusted record keeping is of
paramount importance and that is why we decided to conduct
our study using Hyperledger Fabric, which we discuss next.

2.1 Hyperledger Fabric (HLF)
Hyperledger Fabric (HLF) is an open source implementation
of a permissioned blockchain network that executes dis-
tributed applications written in general-purpose programming
languages (e.g., Go, Java etc) [2]. HLF’s approach is modular,
which implies that the platform is capable of supporting
different implementations of its different components (such
as different consensus protocols) in a plug-and-play fashion.

The HLF architecture comprises of the following compo-
nents:
Peers: Peers can further be of two types namely endorsers

and committers. A peer is called a committer when
it maintains a local copy of the ledger by committing
transactions into its blocks. A peer assumes the role
of an endorser when it is also responsible for simulating
the transactions by executing specific chaincodes and
endorsing the result (see the next subsection 2.2). A
peer can be an endorser for certain types of transactions
and just a committer for others.

Ordering service: The role of this component is to order the
transactions chronologically by time stamping them
to avoid the double spend problem [10]. The ordering
service creates new blocks of transactions and broadcast
them to the peers which then append these blocks
to their local copy of the blockchain (or ledger). The
ordering service can be implemented as a centralized
or decentralized service [14]. It is at the ordering service
level where the consensus (like proof-of-work in Bitcoin
[10]) related to the state of a blockchain takes place.

4https://ethereum.org/

2

https://www.hyperledger.org/
https://ethereum.org/

Towards Blockchain-enabled Wireless Mesh Networks CryBlock’18, June 15, 2018, Munich, Germany

Chaincode: A chaincode or a smart contract is a program code
that implements the application logic. It is run in a
distributed manner by the peers. It is installed and in-
stantiated on the network of HLF peer nodes, enabling in-
teraction with the networks shared ledger (i.e., the state
of a database modeled as a versioned key/value store).

Channel: A channel provides a higher layer of confidentiality
abstraction. A channel can be considered as a subnet
on top of a larger blockchain network. Each channel
has its own set of chaincodes, member entities (peers
and orderers), and a distinct version of a distributed
ledger. This should not be confused with a similar term,
payment channels, used to make multiple off-chain
micro-payments, multiple transactions, without
committing all to a blockchain.

2.2 HLF Protocol
Figure 1 depicts the sequence of transaction execution steps
in HLF’s environment. The description of these execution
steps are as follows:

1. Transaction (Tx) proposal: In this step clients access the
HLF blockchain to submit a proposal for a Tx to be
included in one of the blocks of the HLF blockchain.
Clients propose a transaction through an application
that uses an SDK’s (Java, Python etc) API. This is
shown as the first step in Figure 1.

2. Endorsement and Tx simulation: The transaction proposal
from the above step is then broadcasted to the
endorsing peer nodes in the HLF blockchain network.
Each endorsing peer verifies the Tx proposal in terms
of its correctness (i.e., its structure, the signatures that
it contains, and the membership and permission status
of the client that submits the transaction) uniqueness
(i.e., this proposal has not be submitted in the past).
After the above checks comes the transaction simulation
step. Endorsing peers invoke a relevant chaincode (as
specified in the Tx proposal by the submitting client).
The execution (as per specific arguments specified in
Tx proposal) of this chaincode produces an output
against the current state of the database (ledger).
Without updating the ledger’s state, the output of
the Tx simulation is sent back in the form of proposal
response back to the client through the SDK. In Figure
1 this is shown by the second step.

3. Inspection of proposal response: After the above step the
client-side application collects the responses from the
endorsement step. Afterwards all the responses are cross
checked (in terms of the signatures of the endorsing
peers and the content of the responses) to determine
if there are any disparities among the content of the
responses. If the content of all the responses are the same
and according to the pre-defined endorsement policy
(i.e., number of peers whose endorsements—in terms of
their signatures—are necessary) then the client submits
this Tx to the Ordering Service (more on it in the next

Ordering
Service

Client

Peer 1

Peer 2

Peer 3

En
do

rs
in

g
Pe

er
s

O
rd

er
in

g

no
de

s

Client generates a
 Tx proposal

Simulate/Execute Tx,
endorse YES/NO

Collect endorsement
Assemble endorsement into

a Tx. Send Tx to Ordering Service

Order Tx & create a block. Send
block to all peers in the channel

Verify endorsement
and readset

Notify client whether Tx
was valid or invalid

1

2

3 4

5

6

7

Figure 1: Hyperledger Fabric Protocol

step) that will in turn ultimately update the ledger’s
state as per the Tx simulation outcome in the last step.
It can also happen that in the Tx proposal, made in
the last step, only the current state of the ledger was
queried. In this case there will be no need to update a
ledger’s state and hence there is no submission to the
Ordering Service by the client. In Figure 1 this is shown
by step three.

4. Tx submission to the Ordering Service: The Ordering
Service collects various Txs after the last step via
various channels. This is step four in Figure 1.

5. Tx ordering: Ordering Service orders various Txs according
to their receiving times. This ordered set of Txs is
then included in a block, specific to a channel, which
will later be appended in the channel’s ledger. This is
covered by step five in Figure 1.

6. Tx validation and committing: In this stage all the peers
belonging to a particular channel receive a block
containing Txs specific to this channel. Each peer then
checks all the Txs in terms of their validity. Valid Txs
are those that satisfy an endorsement policy. If the
Txs pass the validity test then they are tagged as valid
otherwise invalid in a block and then this block is finally
appended to the ledger maintained by the peers of this
channel. This is covered by step six in Figure 1.

7. Ledger update notification: Finally, after the ledger update
in the last step the client of the submitting Tx is notified
about the validity or invalidity of the Tx that was
included in the latest block of the channel’s distributed
ledger. This is step seven in Figure 1.

3 CASE STUDY: QMPSU MESH
The Quick Mesh Project (qMp) 5 develops a firmware based
on OpenWrt Linux with the aim to ease the deployment of
mesh networks by the users who are willing to interconnect in
an area, and pool their Internet uplinks [6]. qMp was initiated
in 2011 by a few Guifi.net activists.

5http://qmp.cat/Overview

3

http://qmp.cat/Overview

CryBlock’18, June 15, 2018, Munich, Germany Selimi.et al.

0.0

0.2

0.4

0.6

0.8

1.0

1 10 100

Link throughput [Mbps] (log10 scale)

EC
D
F

min/mean/max: 0.02/13.6/109.1

Figure 2: Bandwidth ECDF

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 - 3 10 - 2 10 - 1 100 101 102 103

Link traffic in the busy hour [kbps] (log10 scale)

EC
D
F

min/mean/max: 0.00/55.4/1736.8

Figure 3: Traffic ECDF

The qMp firmware has enabled to deploy several mesh
networks with actual end-users (e.g., more than 250 active lo-
cations, typically households) in several parts surrounding the
city of Barcelona6. At the time of this writing, there are 10 dif-
ferent mesh networks, and the largest (Sants-UPC or QMPSU)
has 85 operational nodes. In that network, there are two gate-
ways that connect the QMPSU network to the rest of Guifi.net
and the Internet. Users join the mesh by setting up outdoor
routers (i.e., antennas) that automatically establish router-
to-router links. The outdoor routers are connected through
Ethernet to an indoor AP (access point) as a premises network
where the edge devices and services are running: home-servers
such as Raspberry Pi’s or Cloudy devices [4].

Network performance: We monitored the QMPSU mesh
network for a period of one month. We took hourly captures
from the network for the entire month of March 2018. Figures
2 and 3 depict the bandwidth and traffic distribution of all the
links in the network. Figure 2 shows that the link throughput
can be fitted with a mean of 13.6 Mbps. At the same time
Figure 2 reveals that 60% of the nodes have 10 Mbps or
less throughput. Figure 3 demonstrates that the maximum
per-link traffic in the busiest hour is 1736 kbps. We observed
that the resources are not uniformly distributed in the network.
There is a highly skewed bandwidth and traffic distribution.

Node deployment: Based on the network measurement
analysis we strategically deployed 10 Raspberry Pi (RPi3)
devices on the outdoor routers to cover the area of the QMPSU
network as presented in Figure 4. We use our previous work
[13] on service placement to determine nodes in the network.
In this set, we cover nodes with different properties: with
higher bandwidth [13], nodes that are highly connected (i.e.,
with high degree centrality) [7], nodes acting as bridges (with
high betweenness centrality), and nodes not well connected.
After the nodes were chosen, we deployed 10 RPi boards in
the community users home.

4 EVALUATION
We setup a blockchain testbed network comprising RPi3
boards, each running a component of Hyperledger Fabric (HLF)
in the QMPSU network. In this testbed, different RPi3 nodes
run different components of HLF (see Section 2.1 for details on
HLF components). In parallel, we also deployed a similar setup
in the lab environment (for performance comparison purposes)
and evaluated the performance in both environments.
6http://dsg.ac.upc.edu/qmpsu

MelciorPalau

Pisuerga

Ordering
Service

CanBruixa
RPi 2

Nevaristoar

BCN-Salou

JardinBotanic

GSgV-rb

UPC-EETAC

Ethernet
Wireless

#1

 UPC-Alix

GS26gener

 UPC-Portal
RPi 1 RPi 3

RPi 4

RPi 5

RPi 6

RPi 7
RPi 8 RPi 10

RPi 9

Figure 4: Topology of the deployed nodes

4.1 Experimental setup
In our experiments, we deploy a HLF blockchain network7

consisting of a single organizational entity. All the transactions
happen among the members of this single organization. The
HLF components, namely peer (we deploy multiple instances
of this component), orderer, and client are deployed in different
RPi3 boards connected to each other in the same local network.
The RPi3 boards have 1.2GHz 4 core ARM cortex A53 pro-
cessor, a RAM memory of 1GB and run raspbian-stretch OS.
Both, in the lab and in the QMPSU network, we performed
experiments by placing different HLF components at different
physical (RPi3) nodes and by varying the number of peers
from 1 to 4. We evaluate the setup in the lab and in QMPSU
network by comparing transaction latency of HLF when 100
transactions are initiated serially and in parallel. We also eval-
uate transaction latencies in HLF for a 2 peer setup when the
block size is varied from 10 to 100 transactions per block. Our
experiments comprise of 3 runs (taken in different time slots)
and the presented results are averaged over all the runs.

4.2 Results
4.2.1 Transaction latency. Table 1 lists the transaction

completion time (referred to as Time-to-Commit (TCC))
for 100 transactions, initiated in parallel, between the two
peer nodes in the lab environment and in the QMPSU
network respectively with block sizes ranging from 10 to 100
transactions per block. It can be observed that, as the block
size increases, the transaction completion time increases both
in the lab setup as well as in the QMPSU network.

Block Size TTC(Lab) TTC(QMPSU) # of Txs
10 33.4 s 64.2 s 100
20 35.0 s 69.7 s 100
50 39.2 s 75.3 s 100
100 45.3 s 84.8 s 100

Table 1: Transaction delivery time (parallel transactions)

Transaction latency is defined as total time taken to endorse
and to commit a transaction to the ledger. Figure 5 shows the
7https://github.com/anirudhkabi/HLF

4

http://dsg.ac.upc.edu/qmpsu
https://github.com/anirudhkabi/HLF

Towards Blockchain-enabled Wireless Mesh Networks CryBlock’18, June 15, 2018, Munich, Germany

comparison of transaction latency observed for two different
placements of HLF ordering service. We measured the transac-
tion latency when the HLF ordering service is placed randomly
in the network (Random) and when it is placed at the node
chosen with a heuristic that considers the node with higher
bandwidth and degree centrality (BASP) [13]. The results of
Figure 5 are obtained when a client initiates 100 transactions se-
quentially. This Figure reveals that the gain brought by BASP,
for the case when we have one endorser in the network, is 30.8%.
For the case when we have four endorsers in the network, the
gain of BASP over Random is 24%. Further, Figure 5 demon-
strates that in the QMPSU network it takes 1.2 seconds for
a single transaction to be appended to the distributed ledger.

4.2.2 Resource consumption. Figure 6 shows CPU utiliza-
tion by various components of the HLF network namely: an
orderer, a client and two peers (an endorser and a committer).
CPU utilization of all nodes is monitored for a time period
of 60 seconds during which 100 transactions are initiated in
parallel (by the client) and all the transactions are completed.
100 parallel transactions took around 40 seconds to complete.
We chose to monitor the nodes for a time period of 60 seconds
to show idle phase usage and busy phase usage of each node.
In the graph, transactions are initiated at 11th second and
all the transactions get completed at 50th second. It can be
observed that the endorser is the node with the highest CPU
utilization whereas the orderer utilizes the least of CPU.

The Figure 6 shows that, for 100 transactions initiated at the
same time, the endorser’s maximum CPU utilization reaches
96%. The maximum CPU utilization is 81% for the committer
while it is 71% for the orderer. The reason that the endorser has
the highest CPU consumption, among other HLF components,
is because of the chaincode execution at the endorsing peer,
which does not happen at the committer and the orderer.

In HLF each component usually runs in it own Docker
container8. The chaincode container executes the chaincode
for each incoming transaction which is something that does not
happen at the committer node. When multiple transactions
take place in parallel, concurrent execution of the chaincode
happens for all transactions thus, in turn, increasing the load
on the endorsing peer. With 100 parallel transactions, we ob-
serve that the CPU load reaches 96% at the endorser. However,
the load on each endorser can be reduced by deploying multiple
endorsers in the network. The load on different endorsers can
be balanced by designing a suitable endorsement policy and
devising a strategy at the client to request endorsements from
different set of endorsers each time a transaction is initiated.

Similarly, memory usage is the highest by the endorser and
the least by the orderer. Memory usage of committing peer falls
in between of endorsing peer and the orderer. At the orderer
and the committing peers, memory usage remains almost
the same level between the idle phase and during transaction
execution. Memory usage at the orderer mostly falls in the
range of 57%-58% while the memory usage at the committer
is in the range of 57%-60%. At an endorsing peer the memory

8https://www.docker.com/what-docker

30.8%
26.3% 24% 24%

Figure 5: Transaction latency (QMPSU)

Figure 6: CPU and memory utilization

usage increases during transaction execution as the execution
of a chaincode also takes place at the same time. The memory
usage by the endorser is about 60% during the idle phase and
reaches to a maximum of 65% during the chaincode execution.

4.3 Discussion
As we observed in our experiments that, in terms of resource
consumption, the endorser nodes can prove to be a bottleneck.
We believe that this bottleneck is because of the execution of
an additional chaincode container at each endorsing node. In
our current study we only considered one endorser node to
study the resource utilization with a simple endorsement pol-
icy encoded in the corresponding chaincode. It might get more
complicated when we consider more than one endorsers and
with a sophisticated endorsement policy. However, as discussed
in Section 4.2.2, if done right it can actually improve perfor-
mance. In addition to this, the actual distribution of endorsing
peers in a production network, such as QMPSU, might also
affect the network performance (both in terms of CPU utiliza-
tion and transaction latency). So care must be taken, specially

5

https://www.docker.com/what-docker

CryBlock’18, June 15, 2018, Munich, Germany Selimi.et al.

in the resource constrained nature of CMNs, in designing an en-
dorsing policy that is also cognizant of the underlying network
infrastructure (i.e, topology, capacity, performance, etc). A
deployment strategy and an apt endorsement policy balancing
the load on various endorsers in the network can improve the
performance of the blockchain network and allow scaling of
the blockchain network without forming a bottleneck.

5 RELATED WORK
The study [12] compares the public blockchain with permis-
sioned blockchain and discusses the trade-offs among decentral-
ization, scalability and security in the two approaches. Sousa
et al. [14] present the design, implementation and evaluation
of a BFT ordering service for Hyperledger Fabric based on the
the BFT-SMART state machine replication/consensus library.
Their results show that Hyperledger Fabric with their order-
ing service can achieve up to ten thousand transactions per
second and write a transaction irrevocably in the blockchain in
half a second, even with peers distributed over different conti-
nents. The Blockbench [8] is a framework for analyzing private
blockchains. It serves as a fair means of comparison for different
platforms and enables deeper understanding of different system
design choices. They use Blockbench to conduct comprehensive
evaluation of three major private blockchains: Ethereum, Par-
ity9 and Hyperledger Fabric. Their results demonstrate that
these systems are still far from replacing the current database
systems in traditional data processing workloads. In contrast
to most of the works mentioned in this section, we specifically
consider the implications of deploying the blockchain paradigm
to a, still in use, production environment such as that of CMNs.

6 CONCLUSION
The missing ingredient for widespread adoption of CMNs has
always been the issue of economic sustainability. In this paper,
we take on the issue of addressing trustworthy economic
sustainability by proposing the need for an economic substrate
built using blockchain that can keep a record of the transac-
tions related to the contributions (of nodes, links, Internet
gateways, maintenance) and consumption of communication
network’s resources in a decentralized and trusted manner. The
evaluation of the Hyperledger Fabric blockchain deployment
in the laboratory and in a real production mesh network gives
us an understanding of the performance, overhead, influence of
the underlying network, and limitations of this framework. The
results show critical aspects that can be optimized in a Hyper-
ledger Fabric deployment, in the perspective of CMNs, where
several components can prove to be bottlenecks and therefore
put a limiting effect on the rate of economic transactions in

a mesh network. Future work will expand the evaluation to
a wider range of hardware and network configurations and
considering real and synthetic transaction traces with a more
realistic design of an endorsement policy (chaincode).
9https://www.parity.io/

ACKNOWLEDGEMENTS
This work is supported by the AmmbrTech Group, the
Ammbr Foundation, and the Spanish government project
TIN2016-77836-C2-2-R. The authors would like to thank the
people from the Guifi.net (QMPSU) community network for
hosting the servers and supporting the experiments.

REFERENCES
[1] Akyildiz, I. F., Wang, X., and Wang, W. Wireless mesh networks:

a survey. Computer networks 47, 4 (2005), 445–487.
[2] Androulaki, E., et al. Hyperledger Fabric: A Distributed Oper-

ating System for Permissioned Blockchains. ArXiv e-prints (Jan.
2018).

[3] Baig, R., Dalmau, L., Roca, R., Navarro, L., Freitag, F., and Sathi-
aseelan, A. Making community networks economically sustainable,
the guifi. net experience. In Proceedings of the 2016 workshop on
Global Access to the Internet for All (2016), ACM, pp. 31–36.

[4] Baig, R., Freitag, F., and Navarro, L. Cloudy in guifi.net: Es-
tablishing and sustaining a community cloud as open commons.
Future Generation Computer Systems (01/2018 2018).

[5] Belli, L. Community networks: the internet by the people, for the
people, 2017.

[6] Cerdà-Alabern, L., Neumann, A., and Escrich, P. Experimental
evaluation of a wireless community mesh network. In Proceedings
of the 16th ACM International Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (New York, NY,
USA, 2013), MSWiM ’13, ACM, pp. 23–30.

[7] Coimbra, M. E., Selimi, M., Francisco, A. P., Freitag, F., and
Veiga, L. Gelly-scheduling: Distributed graph processing for service
placement in community networks. In 33rd ACM/SIGAPP Sym-
posium On Applied Computing (SAC 2018) (Apr. 2018), ACM.

[8] Dinh, T. T. A., et al. Blockbench: A framework for analyzing
private blockchains. In Proceedings of the 2017 ACM International
Conference on Management of Data (New York, NY, USA, 2017),
SIGMOD ’17, ACM, pp. 1085–1100.

[9] ITU. International Telecommunications Union, ICT
Facts and Figures 2016. http://www.itu.int/en/ITU-
D/Statistics/Documents/facts/ICTFactsFigures2016.pdf.

[10] Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system.
[11] Neumann, A., López, E., Cerdà-Alabern, L., and Navarro, L.

Securely-entrusted multi-topology routing for community networks.
In 2016 12th Annual Conference on Wireless On-demand Network
Systems and Services (WONS) (2016), IEEE, IEEE.

[12] Scherer, M. Performance and scalability of blockchain networks
and smart contracts. Master’s thesis, UmeÃě University, Depart-
ment of Computing Science, 2017.

[13] Selimi, M., Cerdà-Alabern, L., Freitag, F., Veiga, L., Sathiasee-
lan, A., and Crowcroft, J. A lightweight service placement ap-
proach for community network micro-clouds. Journal of Grid
Computing (Feb 2018).

[14] Sousa, J., Bessani, A., and Vukolić, M. A Byzantine Fault-Tolerant
Ordering Service for the Hyperledger Fabric Blockchain Platform.
ArXiv e-prints (Sept. 2017).

[15] Wood, G. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper 151 (2014), 1–32.

6

https://www.parity.io/

	Abstract
	1 Introduction
	2 Blockchain: The underpinning Technology
	2.1 Hyperledger Fabric (HLF)
	2.2 HLF Protocol

	3 Case study: QMPSU mesh
	4 Evaluation
	4.1 Experimental setup
	4.2 Results
	4.3 Discussion

	5 Related Work
	6 Conclusion
	References

